On the Stability of Reconstructing Lattice Sets from X-rays Along Two Directions

نویسندگان

  • Andreas Alpers
  • Sara Brunetti
چکیده

We consider the stability problem of reconstructing lattice sets from their noisy X-rays (i.e. line sums) taken along two directions. Stability is of major importance in discrete tomography because, in practice, these X-rays are affected by errors due to the nature of measurements. It has been shown that the reconstruction from noisy X-rays taken along more than two directions can lead to dramatically different reconstructions. In this paper we prove a stability result showing that the same instability result does not hold for the reconstruction from two directions. We also show that the derived stability result can be carried over by similar techniques to lattice sets with invariant points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for Reconstructing Special Lattice Sets from Their Approximate X-Rays

We study the problem of reconstructing finite subsets of the integer lattice Z from their approximate X-rays in a finite number of prescribed lattice directions. We provide a polynomial-time algorithm for reconstructing Q-convex sets from their “approximate” X-rays. A Qconvex set is a special subset of Z having some convexity properties. This algorithm can be used for reconstructing convex subs...

متن کامل

1 Reconstruction of Q - convex lattice sets

We study the reconstruction of special lattice sets from X-rays when some convexity constraints are imposed on the sets. Two aspects are relevant for a satisfactory reconstruction: the unique determination of the set by its X-rays and the existence of a polynomial-time algorithm reconstructing the set from its X-rays. For this purpose we present the notion of Q-convex lattice sets for which the...

متن کامل

An algorithm reconstructing convex lattice sets

In this paper, we study the problem of reconstructing special lattice sets from X-rays in a finite set of prescribed directions. We present the class of “Q-convex” sets which is a new class of subsets of Z2 having a certain kind of weak connectedness. The main result of this paper is a polynomial-time algorithm solving the reconstruction problem for the “Q-convex” sets. These sets are uniquely ...

متن کامل

Approximate X-rays reconstruction of special lattice sets

Sometimes the inaccuracy of the measurements of the X-rays can give rise to an inconsistent reconstruction problem. In this paper we address the problem of reconstructing special lattice sets in Z from their approximate X-rays in a finite number of prescribed lattice directions. The class of “strongly Q-convex sets” is taken into consideration and a polynomial time algorithm for reconstructing ...

متن کامل

Stability in Discrete Tomography: some positive results

The problem of reconstructing finite subsets of the integer lattice from X-rays has been studied in discrete mathematics and applied in several fields like data security, electron microscopy, medical imaging. In this paper we focus on the stability of the reconstruction problem for some special lattice sets. First we prove that if the sets are additive, then a stability result holds for very sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005